RNaseH2A downregulation drives inflammatory gene expression via genomic DNA fragmentation in senescent and cancer cells
Cellular senescence caused by oncogenic stimuli is associated with the development of various age-related pathologies through the senescence-associated secretory phenotype (SASP). SASP is mediated by the activation of cytoplasmic nucleic acid sensors. However, the molecular mechanism underlying the accumulation of nucleotide ligands in senescent cells is unclear. In this study, we revealed that the expression of RNaseH2A, which removes ribonucleoside monophosphates (rNMPs) from the genome, is regulated by E2F transcription factors, and it decreases during cellular senescence. Residual rNMPs cause genomic DNA fragmentation and aberrant activation of cytoplasmic nucleic acid sensors, thereby provoking subsequent SASP factor gene expression in senescent cells. In addition, RNaseH2A expression was significantly decreased in aged mouse tissues and cells from individuals with Werner syndrome. Furthermore, RNaseH2A degradation using the auxin-inducible degron system induced the accumulation of nucleotide ligands and induction of certain tumourigenic SASP-like factors, promoting the metastatic properties of colorectal cancer cells. Our results indicate that RNaseH2A downregulation provokes SASP through nucleotide ligand accumulation, which likely contributes to the pathological features of senescent, progeroid, and cancer cells.
Authors: Sugawara S, Okada R, Loo TM, Tanaka H, Miyata K, Chiba M, Kawasaki H, Katoh K, Kaji S, Maezawa Y, Yokote K, Nakayama M, Oshima M, Nagao K, Obuse C, Nagayama S, Takubo K, Nakanishi A, Kanemaki MT, Hara E, Takahashi A
投稿者プロフィール
最新の投稿
- 令和6年度(FY2024)2025.01.23miRNA-mediated gene silencing in Drosophila larval development involves GW182-dependent and independent mechanisms
- 令和6年度(FY2024)2025.01.23The dual role of Spn-E in supporting heterotypic ping-pong piRNA amplification in silkworms
- 令和6年度(FY2024)2025.01.23DNAJA2 and Hero11 mediate similar conformational extension and aggregation suppression of TDP-43
- 令和6年度(FY2024)2025.01.23Fusion with heat-resistant obscure (Hero) proteins have the potential to improve the molecular property of recombinant proteins